首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7436篇
  免费   1899篇
  国内免费   1724篇
测绘学   205篇
大气科学   205篇
地球物理   2181篇
地质学   6263篇
海洋学   915篇
天文学   15篇
综合类   488篇
自然地理   787篇
  2024年   16篇
  2023年   91篇
  2022年   198篇
  2021年   274篇
  2020年   295篇
  2019年   296篇
  2018年   300篇
  2017年   347篇
  2016年   382篇
  2015年   341篇
  2014年   451篇
  2013年   481篇
  2012年   445篇
  2011年   463篇
  2010年   401篇
  2009年   513篇
  2008年   545篇
  2007年   522篇
  2006年   467篇
  2005年   435篇
  2004年   434篇
  2003年   378篇
  2002年   352篇
  2001年   298篇
  2000年   301篇
  1999年   271篇
  1998年   254篇
  1997年   229篇
  1996年   218篇
  1995年   215篇
  1994年   173篇
  1993年   157篇
  1992年   120篇
  1991年   92篇
  1990年   75篇
  1989年   77篇
  1988年   49篇
  1987年   39篇
  1986年   20篇
  1985年   10篇
  1984年   12篇
  1983年   4篇
  1982年   1篇
  1980年   3篇
  1979年   6篇
  1978年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
通过对日照市海岸带2个重点沙滩的现场调查和沉积物粒度计算,综合分析了沙滩的侵蚀现状和粒度参数特征。海滨国家森林公园沙滩北部和南部处于侵蚀状态,中部为缓慢淤积状态;万平口海水浴场沙滩北部、中部总体呈侵蚀趋势,南部为淤积状态。海滨国家森林公园沙滩的平均粒径总体要小于万平口海水浴场沙滩,这与两沙滩的坡度不同有关,平均粒径从滩肩到低潮线逐渐变小。海滨国家森林公园沙滩的分选性要好于万平口海水浴场沙滩,分选系数具有由陆向海、由北向南逐渐变小的趋势。沙滩的滩肩和滩面处频率曲线主要为双峰,峰态平坦,物质来源复杂,低潮线处频率曲线主要为单峰,峰态尖锐,物质来源单一。  相似文献   
42.
触地段(Touchdown zone, TDZ)是在役钢悬链线立管(Steel catenary riser, SCR)的关键部位,在复杂载荷作用下,极易形成损伤缺陷,其载荷寿命的评估是深海结构工程中的一个关键问题。本文以大型有限元软件ABAQUS为平台,运用损伤管道实体单元与土弹簧阻尼单元相互作用的模型模拟触地段损伤海底管道在复杂载荷作用下的动力响应,数值计算考虑了管-土相互作用过程中的材料非线性、几何非线性以及接触非线性。讨论了单一环向体积损伤位于触地段管道的不同位置时,触地段损伤管道在不同载荷作用下的动力特性及特征点的动力响应。结果表明,管道所受内外压力以及管道提升端的竖向位移载荷会影响结构的自振频率;体积损伤部位的动力响应较完好部位更剧烈;体积损伤的位置和动力载荷频率对管道动力放大系数的影响很大;当动力载荷的激励频率越接近结构基频时,损伤管道的动力响应及动力放大系数越大。  相似文献   
43.
In order to acquire a better velocity structure of the crustal and uppermost mantle beneath Shanxi area, we obtain the group and phase velocities of Rayleigh wave of the periods 8s to 50s in Shanxi and adjacent area using ambient seismic noise recorded at 216 broad-band stations. All available vertical-component time series for 2014 have been cross-correlated to yield estimates of empirical Rayleigh wave Green's function. Group and phase velocity dispersion curves for Rayleigh wave are measured for each interstation path by applying frequency-time analysis. It describes finer velocity structure of the crust and upper mantle in Shanxi, which reflects the geological structure characteristics at different depths. The resolution is within 50km and the resolution of part periods can reach 40km.The Rayleigh wave group and phase speed maps at short periods(8~18s and 10~22s)show clear correlations with shallow geological structures. Mountain areas on both sides of Shanxi depression zone show apparent high-velocity anomaly, except for low-velocity anomaly in the Taiyuan Basin, Linfen-Yuncheng Basin and Weihe Basin. Especially, the areas of Youyu County-Pianguan County-Kelan County-Shuozhou City and Jingle County-Lishi District of Lüliang City in Lüliang Mountains, and Yu County-Fuping County-Yi County and Yangcheng County-Licheng County in Taihang Mountains, present higher velocity anomaly. In addition, the velocity is lowest in the Weihe Basin, and the amplitude of low velocity decreases gradually from the south to the north of the basins in Shanxi, which probably is related to the process of gradual stretching and development of the Shanxi rift zone from the southwest to the northeast. The obvious velocity difference across the latitude of 38°N exists at 18~30s period of phase and 24~35s period of group velocity maps, which is probably related to the deep and shallow Moho depth variation in the south and north of Shanxi and the suture zone of ancient blocks including "hard" southern block and "soft" northern block. At the same time, the research result of receiver function reveals that partial melting of the lower crust occurs in the northern Taihang Mountains, while the southern section remains stable(Poisson's ratio is above 0.3 in the northern Taihang Mountains and 0.25~0.26 in the southern section). The phase velocity map at 30~50s period clearly shows NW velocity gradient belt, and the low velocity anomaly in the northeast side may be related to Cenozoic volcanism. Meanwhile, the eastern border of Ordos block is the western faults of central basins in Shanxi depression zone. However, some research results indicate that the above border is Lishi Fault in the surface, inferring that the Ordos block shows a shape of wide in the upper and narrow in the lower part from the surface to deep. The Datong volcanic area at 18~45s period of phase and 24~35s period of group velocity maps shows low velocity of trumpet shape from shallow to deep, related to the upwelling of hot material from lower mantle in the Cenozoic causing a large area of intense magmatic activity. It indicates the more specific upwelling channel of Datong volcanoes simultaneously.  相似文献   
44.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   
45.
There have been significant recent advances in understanding the ecohydrology of deep soil. However, the links between root development and water usage in the deep critical zone remains poorly understood. To clarify the interaction between water use and root development in deep soil, we investigated soil water and root profiles beyond maximum rooting depth in five apple orchards planted on farmland with stand ages of 8, 11, 15, 18, and 22 years in a subhumid region on the Chinese Loess Plateau. Apple trees rooted progressively deeper for water with increasing stand age and reached 23.2 ± 0.8 m for the 22‐year‐old trees. Soil water deficit in deep soil increased with tree age and was 1,530 ± 43 mm for a stand age of 22 years. Measured root deepening rate was far great than the reported pore water velocity, which demonstrated that trees are mining resident old water. The deficits are not replenished during the life‐span of the orchard, showing a one‐way mining of the critical zone water. The one‐way root water mining may have changed the fine root profile from an exponential pattern in the 8‐year‐old orchard to a relative uniform distribution in older orchards. Our findings enhance our understanding of water‐root interaction in deep soil and reveal the unintended consequences of critical zone dewatering during the lifespan of apple trees.  相似文献   
46.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   
47.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
48.
杨微 《地震工程学报》2019,41(6):1407-1418
断裂带首波是沿着存在物性差异界面传播的一种地震折射波,在传播过程中携带了断裂带的重要信息,对分析和研究断裂带以及附近区域的精细结构提供了一种新的分析方法。本文主要阐述断裂带首波的产生原理、波形特征、识别及分析方法等,介绍目前国际上识别及利用断裂带首波开展断裂带特征方面的研究现状,并针对地震危险区域存在物性差异的断裂带,提出可结合密集台阵观测技术,利用断裂带首波进行断裂带精细结构探测及其变化监测研究,提高潜在孕震环境及发生机理的认识水平。  相似文献   
49.
陈佳  高琼  王军  邓嘉美 《地震》2019,39(1):72-80
利用程海断裂带附近27个数字地震台站远震波形资料, 提取每一个台站的接收函数, 计算出各台站莫霍面深度同时利用时间域线性反演方法, 获得了各个台站下方的横波速度。 结果显示: 程海断裂带莫霍面深度从南部42 km增至北部的54 km, 南部和北部莫霍面深度有明显的不同。 从程海断裂带下方不同深度S波速度剖面可以看出, 宾川及其北东部地区中下地壳存在明显的低速层, 此低速层可能与还没有固结的热物质有关。 而永胜南部地区, 地壳中S波速度垂直变化剧烈, 低速异常高速异常交替丛生, 这可能是此区地震频发的主要原因。 同时, 本文对宽频带地震仪和短周期地震仪得到的接收函数进行了初步的对比分析。  相似文献   
50.
为研究汤东断裂带土壤气体地球化学特征及其所反映的构造地球化学背景, 采用野外监测的方法分析了张河村与邢李庄村两条测线的土壤H2、 Rn分布特征。 结果表明, 张河村H2浓度、 Rn活度浓度的分布范围分别为0.24×10-6~174.7×10-6、 13.3~69.8 kBq·m-3, 背景值分别为14.26×10-6, 24.8 kBq·m-3。 邢李庄测线H2浓度、 Rn活度浓度的分布范围11.8×10-6~67.06×10-6、 43.6~72.6 kBq·m-3, 背景值分别为37.13×10-6、 72.6 kBq·m-3。 张河村测线在90~105 m处, H2、 Rn出现强烈高值异常, 而120~150 m处出现高值异常。 异常值位于断裂带附近, H2、 Rn气体测值对断裂位置具有良好的指示作用。 气体异常主要受汤东活动断裂构造控制, 汤东断裂下方的深大断裂和汤阴地堑中下地壳的低速体对深部气体释放有重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号